Cramer-Rao lower bound: an example

Suppose that X = (X), a single observation from Bin(m,p), where m is known. The pmf
is given by

flz;p) = (m)px(l —p)™™" where z=0,1,...,m.
T

Note that the range of X depends on m, but not on the unknown parameter p. Also, the
sample size is n = 1.

Cramer-Rao lower bound

Since the range of X does not depend on the unknown parameter p which we wish to
estimate, we can proceed to compute and use the Cramer-Rao lower bound for unbiased
estimators:

log f(xz;p) = log (T;) +xlogp+ (m — z)log(1 — p)
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It follows that for any unbiased estimator, g(X), for p, we have
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Alternatively, we can compute the Cramer-Rao lower bound as follows:
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It follows that the Cramer-Rao lower bound is given by
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Handout #1
Comparing estimators

Consider the estimator g;(X) = =.
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so g1(X) is an unbiased estimator of p. Is it the most efficient unbiased estimator for p?
To answer this question, we compute the variance of g; and compare it to the Cramer-Rao
lower bound which we calculated above.
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Var(g1(X)) = VCLT(E) m2 m2 m

Since Var(g:1) equals the Cramer-Rao lower bound, we can conclude that g;(X) is the
most efficient unbiased estimator for p.

Now consider the estimator go(X) = nXl—jr%
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So g is a biased estimator with
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To compare the performance of go with the performance of g1, we must first compute the
mean square error of go:
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We can compare the (relative) efficiency of g1 and g by comparing the graphs of MSE(g;)
(which is just the variance of g;) and M SE(g2) as functions of p.

Exercise: Fix m = 10 and sketch the graphs of M SFE(g;) and MSE(gs2) as functions of
p. Also, determine the values of p for which g, is more efficient than g¢;.



