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Abstract 
In this paper we provide a general classification of mathematical optimization problems, 
followed by a matrix of applications that shows the areas in which these problems have 
been typically applied in process systems engineering. We then provide a review of 
solution methods of the major types of optimization problems for continuous and discrete 
variable optimization, particularly nonlinear and mixed-integer nonlinear programming. 
We also review their extensions to dynamic optimization and optimization under 
uncertainty. While these areas are still subject to significant research efforts, the emphasis 
in this paper is on major developments that have taken place over the last twenty five 
years.  
 
I. Introduction 
 
When the two authors were asked to provide, respectively, retrospective and perspective 
articles in the area of optimization, we decided that writing the two papers jointly would 
offer a better fit, given the breadth of the optimization area and our complementary 
interests. Our objective in this first paper is to provide a general review on optimization, 
emphasizing the strategies that have been applied or studied more extensively, namely, 
nonlinear programming, mixed-integer nonlinear programming, dynamic optimization, 
and optimization under uncertainty.  In the second part of the paper we outline future 
directions of research that are motivated by the current barriers and limitations that are 
being experienced. These include global and logic-based optimization, large-scale 
computation, and advanced scientific computation.  
 
Optimization has become a major enabling area in process systems engineering. It that 
has evolved from a methodology of academic interest into a technology that has and 
continues to make significant impact in industry. Before we discuss the applications of 
optimization, it is useful to present a classification of problem types. It should be noted 
that this classification is independent of the solution methods. As shown in Fig. 1, 
optimization problems can first be classified in terms of continuous and of discrete 
variables. The major problems for continuous optimization include linear (LP) and 
nonlinear programming (NLP). An important subclass of LP is the linear 
complementarity problem (LCP), while for the NLP it includes quadratic programming 
(QP) and semidefinite programming (SP). For the latter, an important distinction is also 
whether the NLP problem is convex or nonconvex, since the latter may give rise to 
multiple local optima. Another important distinction is whether the problem is assumed 
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to be differentiable or not. As for discrete problems, they are first classified into mixed-
integer linear programming (MILP) and mixed-integer nonlinear programming (MINLP).  
For the former an important particular case is when all the variables are integer, which 
gives rise to an integer programming (IP) problem. This problem in turn can be classified 
into many special problems (e.g. assignment, traveling salesman, etc.), which we do not 
show in Figure 1. The MINLP problem also gives rise to special problems, although here 
the main distinction like in the NLP problem is whether its relaxation is convex or non-
convex.  

 
Figure 1. Tree of classes of optimization problem 

 
 
Regarding their formulation, discrete/continuous optimization problems when 
represented in algebraic form, correspond to mixed-integer optimization problems that 
have the following general form: 
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where f(x, y) is the objective function (e.g. cost), h(x, y) = 0 are the equations that 
describe the performance of the system (material balances, production rates), and g(x, y) 
�� �� are inequalities that define the specifications or constraints for feasible plans and 
schedules. The variables x are continuous and generally correspond to state variables, 
while y are the discrete variables, which generally are restricted to take 0-1 values to 
define for instance the assignments of equipment and sequencing of tasks. Problem (MIP) 
corresponds to a mixed-integer nonlinear program (MINLP) when any of the functions 
involved are nonlinear. If all functions are linear it corresponds to a mixed-integer linear 
program (MILP). If there are no 0-1 variables, the problem (MIP) reduces to a nonlinear 
program (NLP) or linear program (LP) depending on whether or not the functions are 
linear. 
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It should be noted that (MIP) problems, and their special cases, may be regarded as 
steady-state models. Hence, one important extension is the case of dynamic models, 
which in the case of discrete time models gives rise to multiperiod optimization 
problems, while for the case of continuous time it gives rise to optimal control problems 
that generally involve differential-algebraic equation (DAE) systems. Another important 
extension includes problems under uncertainty, which give rise to stochastic optimization 
problems.  
 
Applications matrix 
 
Mathematical programming, and optimization in general, have found extensive use in 
process systems engineering. A major reason for this is that in these problems there are 
often many alternative solutions, and hence, it is often not easy to find the optimal 
solution. Furthermore, in many cases the economics is such that finding the optimum 
solution translates into large savings. Therefore, there might be a large economic penalty 
to just sticking to suboptimal solutions. In summary, optimization has become a major 
technology that helps companies to remain competitive.  
 
As for specific areas, process design problems tend to give rise to NLP and MINLP 
problems, while scheduling and planning problems tend to give rise to LP and MILP 
problems. The reason for this is that design problems tend to rely more heavily on 
predictions of process models, which are nonlinear, while in scheduling and planning the 
physical predictions tend to be less important, since most operations are described 
through time requirements and activities.  In the case of process control the split is about 
even. 
 
 In Table 1 we indicate what specific types of models have been formulated for a number 
of applications in process systems engineering. As seen in Table 1, Design and Synthesis 
have been dominated by NLP and MINLP models due to the need for the explicit 
handling of performance equations, although simpler targeting models give rise to LP and 
MILP problems. Operations problems, in contrast, tend to be dominated by linear models, 
LP and MILP, for planning, scheduling and supply chain problems. NLP, however, plays 
a crucial role at the level of real time optimization. Control has traditionally relied on LP 
and NLP models, although MILPs are being increasingly used for hybrid systems. 
Finally, note that global optimization has concentrated more on design than on operations 
problems, since nonconvexities in the design problems are more likely to yield 
suboptimal solutions since the corresponding bounds for the variables are rather loose in 
these problems. It is also worth noting that the applications listed in Table 1 have been 
facilitated not only by progress in optimization algorithms, but also by the advent of 
modeling techniques (Williams, 1985) and systems such as GAMS (Brooke et. al, 1998) 
and AMPL (Fourer et al., 1992). 
 
Several other papers in this special issue discuss applications of optimization in process 
engineering. Instead, this paper will emphasize optimization methods and concepts as a 
core area for research in process systems engineering. As a result, this review serves as a 
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complement to detailed optimization models in specific applications areas that are 
presented in other papers in this issue. In the next section we present an overview of 
linear and nonlinear programming methods for optimization problems with continuous 
variables. Section III then extends to mixed integer problems and provides a review of 
MINLP methods. Section IV provides a survey of methods for optimization problems 
that include differential-algebraic equations and Section V discusses optimization under 
uncertainty. Finally, Section VI provides a summary and sets the stage for future work 
discussed in our companion Perspectives paper.  

 
Table 1. Applications of Mathematical Programming in Process Systems Engineering 
 

 LP MILP QP,LCP NLP MINLP Global SA/GA 
Design and 
Synthesis 

       

HENS x x  X x x x 
MENS x x  X x x x 

Separations  x   x   
Reactors x   X x x  

Equipment 
Design 

   X x  x 

Flowsheeting    X x   
Operations        
Scheduling x x   x  x 

Supply 
Chain 

x x   x   

Real-time 
optimization 

x  x X    

Control        
Linear MPC x  x     
Nonlinear 

MPC 
   X  x  

Hybrid  x  X x   
 
II. Continuous Variable Optimization  
 
For continuous variable optimization we consider (MIP) without discrete variables y. The 
general problem (NLP) is presented below: 
 

Min      f(x)  
s.t. ( ) 0h x =         (NLP) 
 ( ) 0g x ≤          
   

A key characteristic of problem (NLP) is whether it is convex or not, i.e., it has a convex 
objective function and a convex feasible region. Convex feasible regions require g(x) to 
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be convex and h(x) to be linear. 1If (NLP) is a convex problem, than any local solution is 
also a global solution to (NLP). Moreover, if the objective function is strictly convex, this 
solution is unique. On the other hand, the KKT conditions can only satisfy local 
optimality for nonconvex problems and, as discussed in our companion Perspectives 
paper, a more rigorous (and expensive) search procedure is required to find a global 
solution.  
.   
Further specializations of the problem can be made if the constraint and objective 
functions satisfy certain properties, and specialized algorithms can be constructed for 
these cases. In particular if the objective and constraint functions in (NLP) are linear then 
the following linear program: 
 

Min  cTx  

s.t.  Ax = b         (LP) 
 C x ��G          

  
can be solved in a finite number of steps. The standard method to solve (LP) is the 
simplex method, developed in the late 1940s (see Dantzig, 1963), although interior point 
methods have become quite advanced and competitive for highly constrained problems 
(Wright, 1996). Methods to solve (LP) are widespread and well implemented. Currently, 
start of the art LP solvers can handle millions of variables and constraints and the 
application of further decomposition methods leads to the solution of problems that are 
two or three orders of magnitude larger than this. Because these methods are so widely 
known, further mention of the simplex method will not be described here (see the 
standard references, Hillier and Lieberman, 1974; Edgar, Himmelblau and Lasdon, 2001; 
for more details). Also, the interior point method is described below from the perspective 
of more general nonlinear problems.  
 
Quadratic programs represent a slight modification of (LP) and can be stated as: 
 

 Min cTx+ ½ xTQx         
s.t. Ax = b         (QP) 
 C x ��G  

 
If the matrix Q is positive semi-definite (positive definite) when projected into the null 
space of the active constraints, then (QP) is (strictly) convex and the (QP) has a unique 
minimum (minimizer). Otherwise, local solutions exist for (QP) and more extensive 
global optimization methods are needed to obtain the global solution. Convex QPs can 
also be solved in a finite number of steps. Here a number of active set strategies have 
been created that solve the KKT conditions of the QP and incorporate efficient updates of 
active constraints. Popular methods include null space algorithms (Gill, Murray and 
Wright,), range space methods and Schur complement methods.  As with LPs, QP 
problems can also be solved with interior point methods (see Wright, 1996). Structures of 

                                                 
1 The  function φ(x) is convex over x ∈ X if: φ(α x1+ (1-α) x2) ��α φ(x1+ (1-α) x2) + (1-α) φ(x2) holds for 
all α ∈ (0, 1) and x1, x2 ∈ X . Strict convexity requires that this inequality be strict. 
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large-scale QPs can be exploited quite efficiently with interior and Schur complement 
methods.  

Solving the NLP problem 
 
To introduce solution techniques for (NLP) we first consider solvers based on successive 
quadratic programming (SQP) as they allow the construction of a number of NLP 
algorithms based on Newton steps. Moreover, these solvers have been shown to require 
the fewest function evaluations to solve NLPs (Binder et al., 2001; Schittkowski, 1987) 
and they can be tailored to a broad range of process engineering problems with different 
structure.  
 
SQP applies the equivalent of a Newton step to the KKT conditions of the nonlinear 
programming problem and this leads to a fast rate of convergence. An informal derivation 
proceeds as follows. At a stationary point of (NLP), x*, the first order KKT conditions for 
this problem are given by: 
 

∇f(x*) + A(x*) λ + C(x*) v = 0    (a) 
h(x*) = 0       (b) 
g(x*) + s = 0      (KKT) (c) 
S V e = 0       (d) 
(s, v) ����       (e) 

 
where  e = [1, 1, … , 1]T 
 λ:G the multipliers of the equalitiesG
G v: the multipliers of the inequalities

  
A(x) = ∇h(x)

 
 

C(x) = ∇g(x) 
 

S = diag{s}
 

 
V = diag{v) 

SQP methods find solutions that satisfy (KKT) by generating Newton-like search 
directions at iteration k. In general, one can classify SQP methods by the following 
categories:  

• active set vs. barrier methods to handle bounds and inequality constraints in 
generating search directions. 

• second order information can be provided in a number of ways and problem 
structure can be exploited for Newton-like steps.  

• line search vs. trust region methods to enforce global convergence of the SQP 
iterations.  

 
Active Set vs. Barrier Methods 
 
The complementarity conditions (KKTd, KKTe) present a key difficulty in solving the 
KKT conditions as a set of equations. At the solution, the equations (KKTd) and active 
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bounds (KKTe) are dependent and serve to make the KKT system ill-conditioned near 
the solution. SQP algorithms treat these conditions in two ways. In the active set strategy, 
discrete decisions are made regarding the active constraint set, i ∈ I = {i|gi(x*) = 0}, 
(KKTd) is replaced by si = 0, i ∈ I, and vi = 0, i ∉ I and determining the active set is a 
combinatorial problem. A relatively inexpensive way to determine an estimate of the 
active set (and also satisfy (KKTe)) is to formulate, at a point xk, and to solve the 
quadratic programming (QP) problem at iteration k, given by: 
 

Min  ∇φ(xk)Tp + ½ pT W(xk, λk, vk) p         
s.t.  h(xk) + A(xk) T p = 0      (SQP)   
g(xk) + C(xk ) T p + s=  0, s ���        

 
The KKT conditions of (SQP) are given by: 
 

∇φ(xk) + W(xk, λk, vk) p  + A(xk) λ + C(xk) v = 0    (a) 
  h(xk) + A(xk) T p = 0        (b) 

g(xk) + C(xk ) T p + s =  0     (QPKKT) (c) 
S V e = 0         (d) 
(s, v) ����         (e) 

 
where W(x, λ, ν) = ∇2(f(x) +  h(x) T λ + g(x) T v), the Hessian of the Lagrange function. It 
is easy to show that (QPKKTa-QPKKTc) correspond to a linearization of (KKTa-KKTc) 
at iteration k. Also, selection of the active set and is now handled at the QP level in 
satisfying the conditions (QPKKTd, QPKKTe). To evaluate and change candidate active 
sets, QP algorithms apply inexpensive matrix updating strategies to the KKT matrix 
associated with (SQP). Details of this approach can be found in (Nocedal and Wright, 
2000; Fletcher, 1987).  
 
To avoid the combinatorial problem of selecting the active set, barrier methods modify 
the NLP problem (1-3) to form:   

Min  φ(xk) – µ Σi  ln si             
s.t.  h(xk) = 0       (IP)   
g(xk)+ s =  0           

 
where the solution to this problem has s > 0 for the penalty parameter µ > 0, and 
decreasing µ to zero leads to solution of problem (NLP). The KKT conditions for this 
problem can be written as: 
 

∇φ(x*) + A(x*) λ + C(x*) v = 0        
h(x*) = 0       (IPKKT)  
g(x*) + s = 0          
S V e = µ e          

 
and for µ > 0, s > 0, and v > 0, Newton steps generated to solve (IPKKT) are well-
behaved and analogous to (QPKKT), with a modification on the right hand side of 
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(QPKKTd). Moreover, if Wk is positive definite in the null space of A(xk) T, the Newton 
step can be written as the following QP subproblem: 
 

Min  ∇φ(xk)Tp + ½pT W(xk, λk, vk) p – µ(Sk)-1eT∆s + ½∆sT (Sk)-1Vk ∆s   
s.t.  h(xk) + A(xk) T p = 0      (IPQP)   

g(xk) + C(xk ) T p+ sk +∆ s =  0             
 
where s = sk +∆ s. This QP can be further simplified if the inequality constraints take the 
form of simple bounds. Note that the complementarity conditions are now replaced by 
penalty terms in the objective function. The optimality conditions for this QP can now be 
written as a set of linear equations and the combinatorial problem of selecting the active 
set disappears.  
 
In comparing these approaches, both methods possess clear trade-offs. Barrier methods 
may require more iterations to solve (IP) for various values of µ, while active set methods 
require the solution of a more expensive QP subproblem (SQP). Thus, if there are few 
inequality constraints or an active set is known (say from a good starting guess, or the 
warm-start QP solution from a previous iteration) then solving (SQP) is not expensive 
and the active set method is favored. On the other hand, for problems with many 
inequality constraints, barrier methods are often faster as they avoid the combinatorial 
problem of selecting the active set. This is especially the case for large-scale problems 
and when a large number of bounds are active, as this approach eliminates the necessity 
of choosing an active set. Examples that demonstrate the performance of these 
approaches include the solution of linear Model Predictive Control (MPC) problems (Rao 
et al., 1998) and nonlinear MPC problems (Albuquerque et al, 1997) using interior point 
QP solvers and the solution of large optimal control problems using barrier NLP solvers. 
For instance, an efficient implementation of IPOPT allows the solution of problems with 
more than 2,000,000 variables and 4500 degrees of freedom (see Waechter, 2002).  
 
Providing Second Order Information 
 
With the development and increasing application of automatic differentiation tools, there 
are a number of modeling and simulation platforms accurate first and second derivatives 
can be accessed for optimization. If second derivatives are available for the objective or 
constraint functions, they can be used to construct the Hessian, Wk, for the above QP 
subproblems. However, to obtain a unique solution for these QPs, the active constraint 
gradients must still be full rank and Wk must be positive definite when projected into the 
null space of the active constraint gradients. These properties may not hold far from the 
solution or for problems that do not satisfy strong second order conditions, and 
corrections to the Hessian in (SQP) may be necessary (see Fletcher, 1987).  
 
If second derivatives are not available, positive definite quasi-Newton approximations to 
the reduced Hessian (such as BFGS) are often quite successful. Here if we define the nd 

vector dT = [pT  ∆sT], an nc vector cT = [hT (g+s) T]  and 







=

IC

A
H

T

T 0
,  then we can 
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partition d = Z dz + Y dy where Z ∈ ℜ nd x (nd-nc), Y ∈ ℜnd x nc, H Z = 0 and [Z Y] is a 
nonsingular matrix. If we write the QPs (IPQP) or (SQP, without the bound constraint) in 
the following form:  
 
 Mind a

Td + ½ dTQ d       (QP1) 
 s.t. c + H d = 0        
 
then substituting the partition for d into (QP1) and simplifying leads to:  
 
 dy = -(H Y)-1 c        (RD) 
and 
 Mindz (Z

Ta + ZTQYdy)
T dz  + ½ dz

T  (ZTQZ) dz.    (ND) 
 
With this decomposition, (RD) is often a sparse linear system of equations of order nc 
while (ND) has only (nd-nc) variables. If there are only a few degrees of freedom (nd-
nc), then the quantities (ZTQZ) and (ZTQY)dy are inexpensive to approximate with quasi-
Newton update formulae and finite difference formulae, respectively.  Moreover, a 
stabilized BFGS update approximation for (ZTQZ) leads to a positive definite reduced 
Hessian in (ND) and a unique solution for the QP subproblem.  
 
Finally, for problems with quadratic objective functions, as in data reconciliation, 
parameter estimation, and model predictive control, one can often assume that the value 
of the objective function and its gradient at the solution are vanishingly small. Under 
these conditions, one can show that the multipliers (λ, v) also vanish and W can be 
substituted by ∇2φ(x*). This Gauss-Newton approximation has been shown to be very 
efficient for the solution of least squares problems.  
 
Line search vs. trust region methods 
 
To promote convergence from poor starting points, two types of globalization strategies, 
line search and trust region methods, are commonly used for the search directions 
calculated from the above QP subproblems. In a trust region approach, the constraint, 
||d|| ��∆ is added to the QP. The step, xk+1 = xk + d, is taken if there is sufficient reduction 
of a merit function (e.g., the objective function weighted with some measure of the 
constraint violations). Popular merit functions for SQP methods include the augmented 
Lagrangian function (of the form: φ(x) + λTh(x) + νTg(x) + ρ||g(x)+, h(x)||2) or exact 
penalty functions (of the form: φ(x) + ρ||g(x)+, h(x)||). Also the size of the trust region ∆ is 
adjusted based on the agreement of the reduction of the actual merit function compared to 
its predicted reduction from the QP (see Nocedal and Wright, 2000). However, for values 
of ∆ sufficiently small, (QP1) may have no solution. Instead, trust region constraints can 
be applied to subproblems for dy and dz, which replace (RD) and (ND), respectively. This 
approach has been applied in the KNITRO code (Byrd, Hribar and Nocedal, 1999). Such 
methods have strong global convergence properties and are especially appropriate for ill-
conditioned NLPs.  
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On the other hand, line search methods can be more efficient on problems with 
reasonably good starting points and well-conditioned QP subproblems, as in real time 
optimization. Typically, once the QP search direction is calculated from (SQP) or from 
(IPQP) a step size α ∈ (0, 1] is chosen so that xk + α d leads to a sufficient decrease of a 
merit function. As a recent alternative, a novel line search strategy has been developed 
based on a bi-criterion minimization, with the objective function and constraint 
infeasibility as competing objectives.  Termed the filter approach, this method, also 
developed for trust regions (Fletcher et al., 2001), usually leads to better performance 
than line searches based on merit functions. A detailed description of the filter line search 
method can be found in (Waechter and Biegler, 2002). 
 
Table 2 presents a sampling of available codes of SQP-type solvers that represent the 
above classifications.   
 

Table 2: Representative SQP-type NLP solvers 
 
Method Inequality 

Constraints 
Globalization Full vs. Reduced 

Space 
Second Order 
Information 

IPOPT (Waechter 
and Biegler, 2002) 

Barrier Line Search Full or Reduced 
Space 

Exact or Quasi-
Newton 

KNITRO (Byrd et 
al., 1997) 

Barrier Trust Region Reduced Space Exact or Quasi-
Newton 

LOQO (Vanderbei 
and Shanno, 1997) 

Barrier Line Search Full Space Exact  

NPSOL (Gill et al., 
1990) 

Active Set Line Search Full Space Quasi-Newton 

rSQP (Ternet and 
Biegler, 1996) 

Active Set Line Search Reduced Space Quasi-Newton 

SNOPT (Gill et al., 
1998) 

Active Set Line Search Reduced Space Quasi-Newton 

SOCS(Betts, 2001) Active Set Line Search Full Space Exact  
SRQP (PSE, 2002) Active Set Line Search Reduced Space Quasi-Newton 
TRICE (Dennis et 
al., 1998) 

Barrier Trust Region Reduced Space Exact or Quasi-
Newton 

Other Gradient-based NLP Solvers 

In addition to SQP methods, a number of NLP solvers have been developed and adapted 
for large scale problems. Generally these methods require more function evaluations than 
SQP methods but they perform very well when interfaced to optimization modeling 
platforms such as AMPL, CUTE or GAMS, where function evaluations are cheap. All of 
these can be derived from the perspective of applying Newton steps to portions of the 
KKT conditions of (NLP).  

LANCELOT (Conn et al. 2001) is based on the solution of bound constrained 
subproblems. Here an augmented Lagrangian is formed from (NLP) and the following 
subproblem is solved: 
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 Min f(x) + λTh(x) + vT(g(x)+s) + ½ ρ ||h(x), g(x)+s||2   (AL)
 s.t. s ���      

The above subproblem can be solved very efficiently for fixed values of the multipliers, 
λ and v, and penalty parameter ρ. Here a gradient projection trust region is applied. Once 
subproblem (AL) is solved, the multipliers and penalty parameter are updated in an outer 
loop and the cycle repeats until the KKT conditions for (NLP) are satisfied. LANCELOT 
works best when exact second derivatives are available. This promotes a fast 
convergence rate in solving each subproblem and allows the trust region method to 
exploit directions of negative curvature in the Hessian matrix.  

MINOS (Murtagh and Saunders, 1987) is a well-implemented package that a number of 
similarities to SQP-type methods. Here the quadratic programming subproblem is 
replaced by a linearly constrained NLP, with an augmented Lagrangian objective 
function.  

 Min  f(x) + λTh(x) + vT(g(x)+s) + ½ ρ ||h(x), g(x)+s||2  (LCNLP) 

s.t.  h(xk) + A(xk) T p = 0        
g(xk) + C(xk ) T p+  s =  0, s ���     

At the current iterate, xk, MINOS selects an active set and applies a reduced space 
decomposition to (LCNLP). In fact, the decomposition is implemented in such a way that 
MINOS naturally defaults to the LP simplex method if the objective and constraint 
functions are linear. Upon eliminating the dependent and bounded variables, an 
unconstrained quasi-Newton method is applied to the remaining variables. At the solution 
of this subproblem, the constraints are relinearized and the cycle repeats until the KKT 
conditions of (NLP) are satisfied. For problems with few degrees of freedom, this leads to 
an extremely efficient method even for very large problems. Note that the augmented 
Lagrangian function is used in (LCNLP) in order to penalize movement away from the 
feasible region. MINOS has been interfaced to both GAMS and AMPL and enjoys 
widespread use. It performs especially well on problems with few nonlinear constraints.  

Finally the generalized reduced gradient (GRG) methods, GRG2, CONOPT, and 
SOLVER, consider the same subproblem as in MINOS, but also ensure that the 
constraints are always satisfied at each iterate of (LCNLP) (Edgar et al., 2001). GRG also 
selects an active set and applies a reduced space decomposition. Upon eliminating the 
dependent and bounded variables, an unconstrained quasi-Newton method is applied to 
the remaining variables, along with a constraint restoration step. Note that since xk is 
always feasible, the augmented Lagrangian function in (LCNLP) simply becomes f(x). 
Among all of the gradient based NLP solvers, the GRG methods are the most popular; the 
SOLVER code has been incorporated into MS Excel and optimization is now a widely 
used option in Excel. In the GAMS and AMPL modeling environments, CONOPT is an 
efficient and widely used code that is usually more reliable than MINOS.  
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Optimization without Derivatives 
 
We consider a broad class of optimization strategies that do not require derivative 
information. These methods have the advantage of easy implementation and little prior 
knowledge of the optimization problem. In particular, such methods are well-suited for 
‘quick and dirty’ optimization studies that explore the scope of optimization for new 
problems, prior to investing effort for more sophisticated modeling and solution 
strategies. Most of these methods are derived from heuristics that naturally spawn 
numerous variations. As a result, a very broad literature describes these methods. Here 
we discuss only a few important trends in this area and describe the mostly widely used 
methods using the following classifications.  
 
Classical Direct Search Methods: Developed in the 60s and 70s these methods include 
one-at-a-time search, a variety of pattern searches, and methods based on experimental 
designs (EVOP). In fact, when Computers and Chemical Engineering was founded 25 
years ago, direct search methods were the most popular optimization methods in 
chemical engineering. Methods that fall into this class include the conjugate direction 
method of  Powell (1964), simplex and complex searches, in particular Nelder-Mead 
(1965), the adaptive random search methods of Luus-Jaakola (1973), Goulcher and 
Cesares Long and Banga et al. All of these methods are based on well defined search 
methods that require only objective function values for unconstrained minimization. 
Associated with these methods are numerous studies with successful results on a wide 
range of process problems. Moreover, many of these methods include heuristics that 
prevent premature termination (e.g., directional flexibility in the complex search as well 
as random restarts and direction generation).  
 
Simulated Annealing: This strategy derives from a class of heuristics with analogies to 
the motion of molecules in the cooling and solidification of metals (Laarhoven and Aarts, 
1987). Here a ‘temperature’ parameter, T, can be raised or lowered to influence the 
probability of accepting points that do not improve the objective function.  The method 
starts with a base point, x, and objective value, f(x). The next point x’ is chosen at 
random from a distribution. If f(x’) < f(x), the move is accepted with x’ as the new point. 
Otherwise, x’ is accepted with probability p(T,x’,x). Options include the Metropolis 
distribution,  

p(T, x, x’) =  exp(-(f(x’)-f(x))/T) 
and the Glauber distribution,  

p(T, x, x’) =  exp(-(f(x’)-f(x))/T)/(1 + exp(-(f(x’)-f(x))/T)) 
Temperature is then reduced and the method continues until no further progress is made. 
Simulated annealing has been employed on a wide variety of process examples including 
separation synthesis (Floquet et al. (1994), heat exchanger network synthesis (Dolan, 
Cummings and Levan, 1989) and batch process scheduling (Das et al., 1990).  
 
Genetic Algorithms: This approach, first proposed in (Holland, 1975) is based on the 
analogy of improving a population of solutions through modifying their gene pool. Two 
forms of genetic modification, crossover or mutation, are used and the elements of the 
optimization vector, x, are represented as binary strings. Crossover deals with random 
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swapping of vector elements (among parents with highest objective function values or 
other rankings of population) or any linear combinations of two parents. Mutation deals 
with the addition of a random variable to elements of the vector. Genetic algorithms have 
seen widespread use in process engineering and a number of codes are available. For 
instance, Edgar et al. (2003) describe a related GA algorithm described that is available in 
Excel. Case study examples in process engineering include batch process scheduling 
(Jung et al., 1998), Loehl et al (1998), sensor network design (Sen et al., 1998), and mass 
exchanger network synthesis (Garrard and Fraga, 1998).  
 
Derivative Free Optimization (DFO): In the past decade, the availability of parallel 
computers and faster computing hardware and the need to incorporate complex 
simulation models within optimization studies, have led a number of optimization 
researchers to reconsider classical direct search approaches. In particular, Dennis and 
Torczon (1991) developed a multidimensional search algorithm that extends the simplex 
approach of Nelder and Mead. They note that the Nelder-Mead algorithm fails as the 
number of variables increases, even for very simple problems. To overcome this, their 
multidimensional simplex approach combines reflection, expansion and contraction steps 
that act as line search algorithms for a number of linear independent search directions. 
This approach is easily adapted to parallel computation and the method can be tailored to 
the number of processors available. Moreover, Torczon (1991) showed that this approach 
converges to locally optimal solutions for unconstrained problems and observed an 
unexpected performance synergy when multiple processors are used. It should be noted 
that even EVOP and Hooke-Jeeves may be amenable to this convergence analysis, 
although the multidimensional search is much more efficient. The work of Dennis and 
Torczon (1991) has spawned considerable research on the analysis and code development 
for DFO methods. For instance, Conn et al. (1997) construct a multivariable DFO 
algorithm that uses a surrogate model for the objective function within a trust region 
method. Here points are sampled to obtain a well-defined quadratic interpolation model 
and descent conditions from trust region methods enforce convergence properties. A 
number of trust region methods that rely on this approach are reviewed in Conn et al. 
(1997). Moreover, a number of DFO codes have been developed that lead to black box 
optimization implementations for large, complex simulation models. These include the 
DAKOTA package at Sandia National Lab (Eldred, 2002) and FOCUS developed at 
Boeing Corporation (Booker et al., 1998).    
 
All of the above methods are easy to apply to a wide variety of problem types and 
optimization models. Moreover, because their termination criteria are not based on 
gradient information and stationary points, these methods are often more likely to favor 
the search for global rather than locally optimal solutions. These methods can also be 
adapted easily to include integer variables. However, no rigorous convergence properties 
to globally optimal solutions have yet been discovered.  
 
Derivative free methods are best suited for unconstrained problems or for problems with 
simple bounds. Otherwise, they may have difficulties in handling constraints, as the only 
options open for handling constraints are equality constraint elimination and addition of 
penalty functions for inequality constraints. Both approaches can be unreliable and may 
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lead to failure of the optimization algorithm. Finally, the performance of derivative free 
methods scales poorly (and often exponentially) with the number of decision variables. 
While performance can be improved with the use of parallel computing, these methods 
are rarely applied to problems with more than a few dozen decision variables.  
 
III. Discrete optimization 
 
In many applications in process systems engineering it is required to model discrete 
decisions such as selection of units in a flowsheet or sequences in scheduling, or number 
of units or batches. The former are commonly represented with 0-1 variables, while the 
latter are represented with integer variables that are often approximated as continuous if 
they take large values. In the sections below we review the generalization of  (NLP), or 
alternatively special cases of problem (MIP). 
 
Mixed-Integer Linear Programming  
 
Mixed-integer linear programming (MILP) problems have the general form: 
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For the case when no discrete variables y are involved, the problem reduces to a linear 
programming (LP) problem. MILP methods have been largely developed by operations 
researchers, and therefore we only provide a brief review. The major contribution of 
chemical engineers in this area has been to discover problems and applications that can 
be framed in the form of problem (MILP) (e.g. see Grossmann et al., 1996, 1999; Pinto 
and Grossmann, 1998; Kallrath, 2000). 
 
MILP methods  (Nemhauser and Wolsey, 1988) rely largely on the simplex LP-based 
branch and bound method (Dakin, 1965). This method consists of a tree enumeration in 
which the integer space is successively partitioned into relaxed LP subproblems that are 
solved at each node of the tree. The initial node in which the variables y in (MILP) are 
treated as continuous, yields an absolute lower bound (minimization case) to the optimal 
solution. If as is often the case, this solution exhibits one or more y variables with 
fractional values a tree search is performed according to pre-specified branching rules 
(e.g. depth first, minimum reduced cost).  The LP solution of each node yields a lower 
bound to the solution of the descendant nodes. When a feasible integer solution is found 
this yields an upper bound. Nodes are eliminated based on these bounding properties, and 
the enumeration continues until the difference between the current lower and upper 
bounds lies within a tolerance.   
 
In the worst case the branch and bound method may end up enumerating most of the 
nodes in the tree, and therefore not unexpectedly MILP problems are NP-hard. To 
overcome the potential exponential computation in MILP problems two major 
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developments have been the use of preprocessing and cutting planes. Pre-processing 
techniques rely on techniques for automatic elimination of variables and constraints, 
reduction of bound, fixing of integer variables, and reformulation of constraints. Cutting 
plane techniques are derived from theoretical analysis of the integer convex hull of either 
specialized problems (e.g. knapsack, network flows), or from general unstructured MILP 
problems. Cutting planes are generally generated from the LP relaxation and a separation 
problem that cuts off a portion of the relaxed continuous feasible region that does not 
contain the integer optimal solution. Cutting planes have usually the effect of producing 
tighter lower bounds for the LP relaxation.  Recent trends in MILP include the 
development of branch-and-price (Barnhart et al. 1998) and branch-and-cut methods such 
as the lift-and-project method by Balas, Ceria and Cornuejols (1993), in which cutting 
planes (e.g. Gomory, mixed-integer rounding cuts) are generated as part of the branch 
and bound enumeration. See also Johnson et al. (2000) for a recent review on MILP. 
 
MILP codes build on LP codes that are widely available. The best known include CPLEX 
(ILOG, 2000), XPRESS (Dash Associates, 1999), and OSL (IBM, 1992) all which have 
achieved impressive improvements in their problem solving capabilities.  It is worth 
noting that since MILP problems are NP-hard it is always possible to run into time 
limitations when solving problems with a large number of 0-1 variables, especially if the 
integrality gap (difference between optimal integer objective and optimal LP relaxation) 
is large. However, it is also important to emphasize that the improvements in solving 
capabilities for MILP problems have increased by tens of orders of magnitude over the 
last few years due to a combination of use of cutting planes, improved preprocessing and 
faster computers (Bixby et al., 2002). 
 
Mixed-integer nonlinear programming   
 
Mixed-integer nonlinear programming (MINLP) models typically arise synthesis and 
design problems, and in planning and scheduling problems. MINLP clearly provides 
much greater modeling flexibility for tackling a large variety of problems. While MILP 
methods have been largely developed outside process systems engineering, chemical 
engineers have played a prominent role in the development of MINLP methods. 
 
Major methods for MINLP problems include Branch and Bound (BB) (Gupta and 
Ravindran, 1985; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 1996; Leyffer, 
2001), which is a direct extension of the linear case, except that NLP subproblems are 
solved at each node. Generalized Benders Decomposition (GBD) (Benders, 1962; 
Geoffrion, 1972), and Outer-Approximation (OA) (Duran and Grossmann, 1986; Yuan, 
Zhang, Piboleau and Domenech, 1988; Fletcher and Leyffer, 1994; Ding-Mai and 
Sargent, 1992; Quesada and Grossmann, 1992), are iterative methods that solve a 
sequence of alternate NLP subproblems with all the 0-1 variables fixed, and MILP master 
problems that predict lower bounds and new values for the 0-1 variables.  Finally, the 
Extended Cutting Plane Method (ECP) (Westerlund and Pettersson, 1995) is a variation 
that does not require the solution of NLP subproblems. 
 
For the derivation of the above methods the MINLP problem is assumed to be given by, 
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where f(·), g(·) are convex, differentiable functions, J  is the index set of inequalities, and 
x and y are the continuous and discrete variables, respectively.  The set X is commonly 

assumed to be a convex compact set, e.g.     X = {x | x∈R
n
, Dx < d, xL < x < xU};  the 

discrete set Y corresponds to a polyhedral set of integer points, 
    Y = {y | y∈Zm, Ay < a} , which in most applications is restricted to 0-1 values, y 

∈ {0,1}m. In most applications of interest the objective and constraint functions f(·), g(·) 
are linear in y  (e.g. fixed cost charges and mixed-logic constraints): f (x, y) = cT y + r(x),  
g(x, y) = By + h(x).  
 

 
NLP Subproblems. There are three basic NLP subproblems that can be considered for 
problem (P1): 
a) NLP relaxation 
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where YR is the continuous relaxation of the set Y, and   IFL

k , IFU
k  are index subsets of the 

integer variables yi,    i∈ I , which are restricted to lower and upper bounds,    αi
k, βi

k,  at the 
k'th step of a branch and bound enumeration procedure.   It should be noted that 
αi

k = yi
l , βi

k = yi
m ,  l < k, m < k where yi

l ,yi
m ,  are noninteger values at a previous step, 

and  . , . , are the floor and ceiling functions, respectively. 
 
Also note that if Ø== k

FL
k
FU II  (k=0), (NLP1) corresponds to the continuous NLP 

relaxation of (P1).  Except for few and special cases, the solution to this problem yields in 
general a noninteger vector for the discrete variables.  Problem (NLP1) also corresponds 
to the k’th step in a branch and bound search.  The optimal objective function   ZLB

o  
provides an absolute lower bound to (P1); for m > k, the bound is only valid for 

   IFL
k ⊂ IFL

m, IFU
k ⊂ IFL

m . 
 
b)  NLP subproblem for fixed yk: 
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(NLP2) 

which yields an upper bound   ZU
k  to (P1) provided (NLP2) has a feasible solution. When 

this is not the case, we consider the next subproblem: 

c)  Feasibility subproblem for fixed yk. 
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which can be interpreted as the minimization of the infinity-norm measure of infeasibility 
of the corresponding NLP subproblem.  Note that for an infeasible subproblem the 
solution of (NLPF) yields a strictly positive value of the scalar variable u. 
 
MILP cutting plane. 
  The convexity of the nonlinear functions is exploited by replacing them with supporting 
hyperplanes, that are generally, but not necessarily, derived at the solution of the NLP 
subproblems. In particular, the new values yK (or (xK, yK)) are obtained from a cutting 
plane MILP problem that is based on the K points, (xk, yk), k=1...K generated at the K 
previous steps:  
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where Jk⊆J.  When only a subset of linearizations is included, these commonly 
correspond to violated constraints in problem (P1).  Alternatively, it is possible to include 
all linearizations in (M-MIP).   The solution of (M-MIP) yields a valid lower bound   ZL

K  
to problem (P1).  This bound is nondecreasing with the number of linearization points K.  
Note that since the functions f(x,y) and g(x,y) are convex, the linearizations in (M-MIP) 
correspond to outer-approximations of the nonlinear feasible region in problem (P1). A 
geometrical interpretation is shown in Fig.1, where it can be seen that the convex 
objective function is being underestimated, and the convex feasible region overestimated 
with these linearizations. 
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The different methods can be classified according to their use of the subproblems 
(NLP1), (NLP2) and (NLPF), and the specific specialization of the MILP problem (M-
MIP). It should be noted that in the GBD and OA methods (case (b)), and in the LP/NLP 
based branch and bound mehod (case (d)),  the problem (NLPF) is solved if infeasible 
subproblems are found.  Each of the methods is explained next in terms of the basic 
subproblems. 
     
Branch and Bound.  While the earlier work in branch and bound (BB) was aimed at 
linear problems (Dakin, 1965), this method can also be applied to nonlinear problems 
(Gupta and Ravindran, 1985; Nabar and Schrage, 1991; Borchers and Mitchell, 1994; 
Stubbs and Mehrotra, 1999; Leyffer, 2001).  The BB method starts by solving first the 
continuous NLP relaxation.  If all discrete variables take integer values the search is 
stopped. Otherwise, a tree search is performed in the space of the integer variables 

   yi, i∈ I . These are successively fixed at the corresponding nodes of the tree, giving rise 
to relaxed NLP subproblems of the form (NLP1) which yield lower bounds for the 
subproblems in the descendant nodes. Fathoming of nodes occurs when the lower bound 
exceeds the current upper bound, when the subproblem is infeasible or when all integer 
variables yi take on discrete values.  The latter yields an upper bound to the original 
problem. 
 
The BB method is generally only attractive if the NLP subproblems are relatively 
inexpensive to solve, or when only few of them need to be solved.  This could be either 
because of the low dimensionality of the discrete variables, or because the integrality gap 
of the continuous NLP relaxation of (P1) is small. 
 

Outer-Approximation (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and 
Leyffer, 1994).  The OA method arises when NLP subproblems (NLP2) and MILP 
master problems (M-MIP) with Jk = J  are solved successively in a cycle of iterations to 
generate the points (xk, yk).   
  
Since the master problem (M-MIP) theoretically requires for equivalence with (P1), the 
solution of all feasible discrete variables yk, the following MILP relaxation is considered, 
assuming that the solution of K different NLP subproblems (where K =|KFS ∪  KIS|, 
KFS is the set of solutions from NLP2 and KIS is the set of solutions from NLPF) is 
available: 
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Given the assumption on convexity of the functions f(x,y) and g(x,y), the solution of 
problem (RM-OA), ZL

K , corresponds to a lower bound of the solution of problem (P1).  
Also, since function linearizations are accumulated as iterations proceed, the master 
problems (RM-OA) yield a non-decreasing sequence of lower bounds, 
ZL

1 .. .≤ ZL
k ≤.. .≤ZL

K , since linearizations are accumulated as iterations k proceed.   
 
The OA algorithm as proposed by Duran and Grossmann (1986) consists of performing a 
cycle of major iterations, k=1,..K, in which (NLP1) is solved for the corresponding yk, 
and the relaxed MILP master problem (RM-OA) is updated and solved with the 
corresponding function linearizations at the point (xk,yk), for which the corresponding 
subproblem NLP2 is solved. If feasible, the solution to that problem is used to construct 
the first MILP master problem; otherwise a feasibility problem (NLPF) is solved to 
generate the corresponding continuous point (Fletcher and Leyffer, 1994). The initial 
MILP master problem (RM-OA) then generates a new vector of discrete variables. The 
(NLP2) subproblems yield an upper bound that is used to define the best current solution, 

}{min k
U

k

K ZUB = .  The cycle of iterations is continued until this upper bound and the 

lower bound of the relaxed master problem, ZL
K , are within a specified tolerance.  One 

way to avoid solving the feasibility problem (NLPF) in the OA algorithm when the 
discrete variables in problem (P1) are 0-1, is to introduce the following integer cut whose 
objective is to make infeasible the choice of the previous  0-1 values generated at the K 
previous iterations (Duran and Grossmann, 1986):  
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                (ICUT) 

where Bk={ i | yik = 1}, Nk={ i | yik = 0}, k=1,...K. This cut becomes very weak as the 
dimensionality of the 0-1 variables increases.  However, it has the useful feature of 
ensuring that new 0-1 values are generated at each major iteration.  In this way the 
algorithm will not return to a previous integer point when convergence is achieved. Using 
the above integer cut the termination takes place as soon as ZLK ��8%K.   
 
The OA method generally requires relatively few cycles or major iterations.  One reason 
is that the OA algorithm trivially converges in one iteration if f(x,y) and g(x,y) are linear.   
This property simply follows from the fact that if f(x,y) and g(x,y) are linear in x and y  
the MILP master problem (RM-OA) is identical to the original problem (P1).  
 
It is also important to note that the MILP master problem need not be solved to 
optimality.  In fact given the upper bound UBK and a tolerance ε, it is sufficient to 
generate the new (yK, xK) by finding a mixed-integer solution to the MILP that lies below 

ε−KUB . In this case the OA iterations are terminated when (RM-OAF) has no feasible 
solution.  
 
Generalized Benders Decomposition (Geoffrion, 1972).  The GBD method (see Flippo 
and Kan 1993) is similar to the Outer-Approximation method.  The difference arises in 
the definition of the MILP master problem (M-MIP).  In the GBD method only active 
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inequalities are considered Jk = {j |gj (xk, yk) = 0} and the set   x∈ X  is disregarded.  In 

particular, consider an outer-approximation given at a given point (xk, yk),  
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where for a fixed yk the point xk corresponds to the optimal solution to problem (NLP2). 
Making use of the Karush-Kuhn-Tucker conditions and eliminating the continuous 
variables x, the inequalities in (OAk) can be reduced as follows (Quesada and Grossmann 
(1992):  

 ( ) ( ) ( )[ ]kTkk
y

kkTkkTkk
y

kk yyyxgyxgyyyxfyxf −∇++−∇+≥ ),(),(),(),( µα   (LCk) 

 
which is the Lagrangian cut projected in the y-space. This can be interpreted as a 
surrogate constraint of the equations in (OAk), because it is obtained as a linear 
combination of these. 

For the case when there is no feasible solution to problem (NLP2), then if the point xk is 
obtained from the feasibility subproblem (NLPF), the following feasibility cut projected 
in y can be obtained using a similar procedure, 
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In this way, the problem (M-MIP) reduces to a problem projected in the y-space: 
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where KFS is the set of feasible subproblems (NLP2) and KIS is the set of infeasible 

subproblems whose solution is given by (NLPF).  Also |KFS  ∪  KIS | = K.   
 
Since the master problem (RM-GBD) can be derived from the master problem (RM-OA), 
in the context of problem (P1), Generalized Benders decomposition can be regarded as a 
particular case of the Outer-Approximation algorithm. In fact given the same set of K 
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subproblems, the lower bound predicted by the relaxed master problem (RM-OA) can be 
shown to be greater or equal to the one predicted by the relaxed master problem (RM-
GBD).  This property follows from the fact that the Lagrangian and feasibility cuts, (LCk) 
and (FCk), are surrogates of the outer-approximations (OAk). Given the fact that the 
lower bounds of GBD are generally weaker, this method commonly requires a larger 
number of cycles or major iterations.  As the number of 0-1 variables increases this 
difference becomes more pronounced.  This is to be expected since only one new cut is 
generated per iteration. Therefore, user-supplied constraints must often be added to the 
master problem to strengthen the bounds.  Also, it is sometimes possible to generate 
multiple cuts from the solution of an NLP subproblem in order to strengthen the lower 
bound (Magnanti and Wong, 1981).  As for the OA algorithm, the trade-off is that while 
it generally predicts stronger lower bounds than GBD, the computational cost for solving 
the master problem (M-OA) is greater since the number of constraints added per iteration 
is equal to the number of nonlinear constraints plus the nonlinear objective. Sahinidis and 
Grossmann (1991) have shown that if  problem (P1) has zero integrality gap, the GBD 
algorithm converges in one iteration once the optimal (x*, y*) is found. This property 
implies that the only case one can expect the GBD method to terminate in one iteration, is 
when the initial discrete vector is the optimum, and when the objective value of the NLP 
relaxation of problem (P1) is the same as the objective of the optimal mixed-integer 
solution. One further property that relates the OA and GBD algorithms is that a cut 
obtained from performing one Benders iteration on the MILP master (RM-OA) is 
equivalent to the cut obtained from the GBD algorithm. By making use of this property, 
instead of solving the MILP (RM-OA) to optimality, for instance by LP-based branch and 
bound, one can generate a GBD cut by simply performing one Benders (1962) iteration 
on the MILP.  
 
Extended Cutting Plane (Westerlund and Pettersson, 1995).  The ECP method, which is 
an extension of Kelly’s cutting plane algorithm for convex NLP (Kelley, 1960), does not 
rely on the use of NLP subproblems and algorithms. It relies only on the iterative solution 
of the problem (M-MIP) by successively adding a linearization of the most violated 

constraint at the predicted point   (xk,yk) : )},(max{argˆ{ kk
j

Jj

k yxgjJ
∈

∈=  Convergence is 

achieved when the maximum constraint violation lies within the  specified tolerance. The 
optimal objective value of (M-MIP) yields a non-decreasing sequence of lower bounds. It 
is of course also possible to either add to (M-MIP) linearizatons of all the violated 
constraints in the set Jk , or linearizations of all the nonlinear constraints j ∈ J.  In the 
ECP method the objective must be defined as a linear function, which can easily be 
accomplished by introducing a new variable to transfer nonlinearities in the objective as 
an inequality.  
 
Note that since the discrete and continuous variables are converged simultaneously, the 
ECP method may require a large number of iterations.  However, this method shares with 
the OA method Property 2 for the limiting case when all the functions are linear.  
 

LP/NLP based Branch and Bound (Quesada and Grossmann, 1992).  This method is 
similar in spirit to a branch and cut method, and avoids the complete solution of the 
MILP master problem (M-OA) at each major iteration.  The method starts by solving an 
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initial NLP subproblem, which is linearized as in (M-OA). The basic idea consists then of 
performing an LP-based branch and bound method for (M-OA) in which NLP 
subproblems (NLP2) are solved at those nodes in which feasible integer solutions are 
found. By updating the representation of the master problem in the current open nodes of 
the tree with the addition of the corresponding linearizations, the need of restarting the 
tree search is avoided.  
 
This method can also be applied to the GBD and ECP methods. The LP/NLP method 
commonly reduces quite significantly the number of nodes to be enumerated.  The trade-
off, however, is that the number of NLP subproblems may increase. Computational 
experience has indicated that often the number of NLP subproblems remains unchanged. 
Therefore, this method is better suited for problems in which the bottleneck corresponds 
to the solution of the MILP master problem. Leyffer (1993) has reported substantial 
savings with this method. 
 

Extensions of MINLP Methods 
 
In this subsection we present an overview of some of the major extensions of the methods 
presented in the previous section. 
 
Quadratic Master Problems.  For most problems of interest, problem (P1) is linear in y:  
f(x,y) = φ(x) + cTy, g(x,y) = h(x) + By.  When this is not the case Fletcher and Leyffer 
(1994) suggested toinclude in the feasibility version of (RMIP-OA) a quadratic 
approximation ),(2 kk yxL∇  of the Hessian of the Lagrangian of the last NLP 
subproblem, which yields a mixed-integer quadratic programming (MIQP) problem.  
Ding-Mei and Sargent (1992), found that the quadratic approximations can help to reduce 
the number of major iterations since an improved representation of the continuous space 
is obtained.  Note also that for convex f(x, y) and g(x,y) using an MIQP leads to rigorous 
solutions since the outer-approximations remain valid.  Also, if the function f(x,y) is 
nonlinear in y, and y is a general integer variable, Fletcher and Leyffer (1994) have 
shown that the original OA algorithm may require a much larger number of iterations to 
converge than when the master problem (M-MIQP) is used. This, however, comes at the 
price of having to solve an MIQP instead of an MILP. Of course, the ideal situation is the 
case when the original problem (P1) is quadratic in the objective function and linear in 
the constraints, as then (M-MIQP) is an exact representation of such a mixed-integer 
quadratic program.  
 

Reducing dimensionality of the master problem in OA.  The master problem (RM-OA) 
can involve a rather large number of constraints, due to the accumulation of 
linearizations.  One option is to keep only the last linearization point, but this can lead to 
nonconvergence even in convex problems, since then the monotonic increase of the lower 
bound is not guaranteed. A rigorous way of reducing the number of constraints without 
greatly sacrificing the strength of the lower bound can be achieved in the case of the 
"largely" linear MINLP problem:  

                              
    min Z = a T w + r ( v ) + c T y    (PL) 
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   s.t. Dw + t (v) + Cy < 0

Fw + Gv + Ey< b

w∈W , v∈V , y∈Y

 

where (w, v) are continuous variables and r(v) and t(v) are nonlinear convex functions.  
As shown by Quesada and Grossmann (1992), linear approximations to the nonlinear 
objective and constraints can be aggregated with the following MILP master problem: 
 

                             min ZL
K

= aTw + β + cT y                                                        (M-MIPL)
 

 KkGCytDwrts kTkkTkk ,....1)(()(])([)()(.. =−−++≥ ννµνλνβ  
   Fw + Gv + Ey < b  

     w∈W , v∈V , y∈Y , β∈ R
1

 
Numerical results have shown that the quality of the bounds is not greatly degraded with 
the above MILP as might happen if GBD is applied to (PL). 
 
Handling of equalities.  For the case when linear equalities of the form h(x, y) = 0 are 
added to (P1) there is no major difficulty since these are invariant to the linearization 
points.  If the equations are nonlinear, however, there are two difficulties.  First, it is not 
possible to enforce the linearized equalities at K points.  Second, the nonlinear equations 
may generally introduce nonconvexities, unless they relax as convex inequalities (see 
Bazaara et al, 1994).  Kocis and Grossmann (1987) proposed an equality relaxation 
strategy in which the nonlinear equalities are replaced by the inequalities, 
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where   T k = {tii
k},  and   tii

k  = sign    (λi
k)  in which    λi

k  is the multiplier associated to the 
equation hi(x, y) = 0.  Note that if these equations relax as the inequalities h(x, y ) < 0 for 
all y, and h(x, y) is convex, this is a rigorous procedure.  Otherwise, nonvalid supports 
may be generated.  Also, note that in the master problem of GBD, (RM-GBD), no special 
provision is required to handle equations since these are simply included in the 
Lagrangian cuts. However, similar difficulties as in OA arise if the equations do not relax 
as convex inequalities. 
 
Handling of nonconvexities.  When f(x,y) and g(x,y) are nonconvex in (P1), or when 
nonlinear equalities, h(x, y) = 0,  are present, two difficulties arise.  First, the NLP 
subproblems (NLP1), (NLP2), (NLPF) may not have a unique local optimum solution.  
Second, the master problem (M-MIP) and its variants (e.g. M-MIPF, M-GBD, M-MIQP), 
do not guarantee a valid lower bound ZLK or a valid bounding representation with which 
the global optimum may be cut off.  One possible approach to circumvent this problem is 
reformulation. This, however, is restricted to special cases, most notably in geometric 
programming constraints (posynomials) in which  exponential transformations, u=exp(x), 
can be applied for convexification. 
 
One general solution approach for handling non-convexities is to develop rigorous global 
optimization algorithms, that assume specific forms of the nonlinearities (e.g. bilinear, 
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linear fractional, concave separable) as will be discussed in the Perspectives article. The 
other option for handling nonconvexities is to apply a heuristic strategy to try to reduce as 
much as possible the effect of nonconvexities.  While not being rigorous, this requires 
much less computational effort. We will describe here an approach for reducing the effect 
of nonconvexities at the level of the MILP master problem. 
 
Viswanathan and Grossmann (1990) proposed to introduce slacks in the MILP master 
problem to reduce the likelihood of cutting-off feasible solutions.  This master problem 
(Augmented Penalty/Equality Relaxation) (APER) has the form: 

 
   

min Z K = α + w p
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     x∈X , y∈Y , α∈ R1 , pk, qk > 0  
 

where   w p
k , wq

k  are weights that are chosen sufficiently large (e.g. 1000 times magnitude 

of Lagrange multiplier).   Note that if the functions are convex then the MILP master 
problem (M-APER) predicts rigorous lower bounds to (P1) since all the slacks are set to 
zero.  

It should also be noted that another modification to reduce the undesirable effects of 
nonconvexities in the master problem is to apply global convexity tests followed by a 
suitable validation of linearizations. One possibility is to apply the tests to all 
linearizations with respect to the current solution vector (yK, xK)  (Grossmann and 
Kravanja, 1994).  

Computer Codes for MINLP 
 
The number of computer codes for solving MINLP problems is still rather small.  The 
program DICOPT (Viswanathan and Grossmann, 1990) is an MINLP solver that is 
available in the modeling system GAMS (Brooke et al., 1998). The code is based on the 
master problem (M-APER) and the NLP subproblems (NLP2). This code also uses the 
relaxed (NLP1) to generate the first linearization for the above master problem, with 
which the user need not specify an initial integer value. Also, since bounding properties 
of (M-APER) cannot be guaranteed, the search for nonconvex problems is terminated 
when there is no further improvement in the feasible NLP subproblems.  This is a 
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heuristic that works reasonably well in many problems. Codes that implement the branch-
and-bound method using subproblems (NLP1) include the code MINLP_BB that is based 
on an SQP algorithm (Leyffer, 2001) and is available in AMPL, the code BARON 
(Sahinidis, 1996) that also implements global optimization capabilities, and the code SBB 
ZKLFK� LV� DYDLODEOH� LQ� *$06� �%URRNH� HW� DO�� ������� 7KH� FRGH� –ECP implements the 
extended cutting plane method by Westerlund and Pettersson (1995), including the 
extension by Pörn and Westerlund (2000). Finally, the code MINOPT (Schweiger and 
Floudas, 1998) also implements the OA and GBD methods, and applies them to mixed-
integer dynamic optimization problems. It is difficult to make general remarks on the 
efficiency and reliability of all these codes and their corresponding methods since no 
systematic comparison has been made. However, one might anticipate that branch and 
bound codes are likely to perform better if the relaxation of the MINLP is tight. 
Decomposition methods based on OA are likely to perform better if the NLP 
subproblems are relatively expensive to solve, while GBD can perform with some 
efficiency if the MINLP is tight, and there are many discrete variables. ECP methods tend 
to perform well on mostly linear problems. 
 
IV. Dynamic Optimization 
 
DAE Optimization – Problem Statement  
 
Interest in dynamic simulation and optimization of chemical processes has increased 
significantly during the last two decades. Chemical processes are modeled dynamically 
using differential-algebraic equations (DAEs), consisting of differential equations that 
describe the dynamic behavior of the system, such as mass and energy balances, and 
algebraic equations that ensure physical and thermodynamic relations. Typical 
applications include control and scheduling of batch processes; startup, upset, shut-down 
and transient analysis; safety studies and the evaluation of control schemes. We state a 
general differential-algebraic optimization problem (DAOP) as follows:  
 

Min  Φ(z(tf ); y (tf); u(tf); tf; p)    (DAOP) 
s.t.  F(dz/dt; z(t); y(t); u(t); t; p)  = 0, z(0) = z0 

Gs(z(ts); y(ts); u(ts); ts; p)) = 0 
zL ��]�W����]U 
yL ��\�W����\U 
uL ��X�W����XU 
pL ��S���SU 
tf

L ��Wf ��Wf
U 

 
where Φ is a scalar objective function at final time, tf, F are DAE constraints, Gs are 
additional point conditions at times ts, z are differential state profile vectors, y are 
algebraic state profile vectors, u are control state profile vectors and p is a 
time-independent parameter vector.  
 
We assume, without loss of generality, that the index of the DAE system is one, 
consistent initial conditions are available and that the objective function is in the Mayer 
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form. Otherwise, it is easy to reformulate problems to this form. Problem (DAOP) can be 
solved either by the variational approach or by applying some level of discretization that 
converts the original continuous time problem into a discrete problem. Early solution 
strategies, known as indirect methods, were focused on solving the classical variational 
conditions for optimality. On the other hand, methods that discretize the original 
continuous time formulation can be divided into two categories, according to the level of 
discretization. Here we distinguish between the methods that discretize only the control 
profiles (partial discretization) and those that discretize the state and control profiles (full 
discretization). Basically, the partially discretized problem can be solved either by 
dynamic programming or by applying a nonlinear programming (NLP) strategy 
(direct-sequential). A basic characteristic of these methods is that a feasible solution of 
the DAE system, for given control values, is obtained by integration at every iteration of 
the NLP solver. The main advantage of these approaches is that, for the NLP solver, they 
generate smaller discrete problems than full discretization methods.  
 
Methods that fully discretize the continuous time problem also apply NLP strategies to 
solve the discrete system and are known as direct-simultaneous methods. These methods 
can use different NLP and discretization techniques but the basic characteristic is that 
they solve the DAE system only once, at the optimum. In addition, they have better 
stability properties than partial discretization methods, especially in the presence of 
unstable dynamic modes. On the other hand, the discrete problem is larger and requires 
large-scale NLP solvers.  
 
With this classification we take into account the degree of discretization used by the 
different methods. Below we briefly present the description of the variational methods, 
followed by methods that partially discretize the dynamic optimization problem, and 
finally we consider full discretization methods for problem (DAOP).  
 
Variational methods  
 
These methods are based on the solution of the first order necessary conditions for 
optimality that are obtained from Pontryagin’s Maximum Principle (Pontryagin et al., 
1962). If we consider a version of (DAOP) without bounds, the optimality conditions are 
formulated as a set of DAEs: 
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where the Hamiltonian, H, is a scalar function of the form H(t) = F ),,,,( tpuyz Tλ(t) and 
λ(t) is a vector of adjoint variables.  Boundary and jump conditions for the adjoint 
variables are given by: 
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where vf , vs  are the multiplier associated with the final time and point constraints, 
respectively. The most expensive step lies in obtaining a solution to this boundary value 
problem. Normally, the state variables are given as initial conditions and the adjoint 
variables as final conditions. This formulation leads to boundary value problems (BVPs) 
that can be solved by a number of standard methods including single shooting, invariant 
embedding, multiple shooting or some discretization method such as collocation on finite 
elements or finite differences. Also the point conditions lead to an additional calculation 
loop to determine the multipliers vf and vs. On the other hand, when bound constraints are 
considered, the above conditions are augmented with additional multipliers and 
associated complementarity conditions. Solving the resulting system leads to a 
combinatorial problem that is prohibitively expensive except for small problems.   
 
Partial discretization  
 
These strategies consider a discretization of the control profile u(t) in (DAOP). Two 
strategies are usually considered, one based on dynamic programming and the other 
based on nonlinear programming.  
 
Dynamic programming  
 
Iterative dynamic programming (IDP) for the solution of dynamic optimization problems 
has been limited to small problems. However, this approach can be made efficient (Luus, 
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1993; Bojko and Luus, 1992) by allowing a very solution coarse grid, which in some 
cases can be accurate enough to represent a solution to (DAOP). Although the IDP 
algorithm is slower than most gradient-based algorithms, it can be useful to cross-check 
results of relatively small problems and it may avoid local solutions. Here the probability 
of obtaining the global optimum is usually high if the grid is well chosen (Dadebo and 
McAuley, 1995). For these techniques the time horizon is divided into P time stages, each 
of length L. Then, the control variables are usually represented as piecewise constant or 
piecewise linear functions in each interval.  
 
The functions in each interval (ti; ti+1), usually take the form: u(t) = ui + ((ui+1 - ui)/L)( ti+1 
- ti) where ui and ui+1 are the values of u at ti and ti+1 , respectively. The dynamic 
optimization problem is to find ui ; i = 1,…P  that minimize a given objective function. 
The basic search algorithm mimics the classical dynamic programming algorithm starting 
at the last stage with a discrete set of control values. For a set of input states, the best 
control is chosen at each stage and the algorithm proceeds forward to a previous stage. 
Once all of the stages are considered, the discrete of control values is narrowed around 
the best set of values and the process repeats. More details of this approach can be found 
in (Dadebo and McAuley, 1995; Luus, 1993). The IDP algorithm works well when the 
dynamic optimization problem does not include bounds on state variables. In order to 
include them, a penalty term has to be added into the objective function to penalize the 
constraint violation. This can be done by adding a state variable for each inequality that 
measures the constraint violation over time (Mekarapikiruk and Luus, 1997) or by 
computing the constraint violation at given points in time (Dadebo and McAuley, 1995).  
 
Direct Sequential Methods 
  
With partial discretization methods (also called sequential methods or control vector 
parametrization), only the control variables are discretized. Given the initial conditions 
and a given set of control parameters, the DAE system is solved with a differential 
algebraic equation solver at each iteration. This produces the value of the objective 
function, which is used by a Nonlinear Programming solver to find the optimal 
parameters in the control parametrization, υ. The sequential method is reliable when the 
system contains only stable modes. If this is not the case, finding a feasible solution for a 
given set of control parameters can be difficult. The time horizon is divided into time 
stages and at each stage the control variables are represented with a piecewise constant, a 
piecewise linear or a polynomial approximation (Vassiliadis, 1993; Feehery and Barton, 
1998). A common practice is to represent the controls as a set of Lagrange interpolation 
polynomials.  
 
For the NLP solver, gradients of the objective and constraint functions with respect to the 
control parameters can be calculated with the sensitivity equations of the DAE system, 
given by: 
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the cost of obtaining these sensitivities is directly proportional to Nq, the number of 
decision variables in the NLP. Alternately, gradients can be obtained by integration of the 
adjoint equations (VCa, VCe, VBC) (Bryson and Ho, 1969; Hasdorff, 1976; Sargent and 
Sullivan, 1977) at a cost independent of the number of input variables and proportional to 
the number of constraints in the NLP.  
 
The methods that are based on this approach can not treat directly the bounds on state 
variables because the state variables are not included in the nonlinear programming 
problem. Instead, most of the techniques for dealing with inequality path constraints rely 
on defining a measure of the constraint violation over the entire horizon, and then 
penalizing it in the objective function, or forcing it directly to zero through an end-point 
constraint (Vassiliadis et al., 1994). Other techniques approximate the constraint 
satisfaction (constraint aggregation methods) by introducing an exact penalty function 
(Bloss et al., 1999; Sargent and Sullivan, 1977) or a Kreisselmeier-Steinhauser function 
(Bloss et al, 1999) into the problem.  
 
Finally, initial value solvers that handle path constraints directly have been developed in 
Feehery and Barton (1998). The main idea is to use an algorithm for constrained dynamic 
simulation so that any admissible combination of the control parameters produces an 
initial value problem that is feasible with respect to the path constraints. The algorithm 
proceeds by detecting activation and deactivation of the constraints during the solution, 
and solving the resulting high-index DAE system and their related sensitivities.  
 
Full discretization  
 
Full discretization methods explicitly discretize all the variables of the DAE  system and 
generate a large scale nonlinear programming problem that is usually solved with a 
Successive Quadratic Programming (SQP) algorithm. These methods follow a 
simultaneous approach (or infeasible path approach); that is, the DAE system is not 
solved at every iteration, it is only solved at the optimum point. Because of the size of the 
problem, special decomposition strategies are used to solve the NLP efficiently. Despite 
this characteristic, the simultaneous approach has advantages for problems with state 
variable (or path) constraints and for systems where instabilities occur for a range of 
inputs. In addition, the simultaneous approach can avoid intermediate solutions that may 
not exist, are difficult to obtain, or require excessive computational effort. There are 
mainly two different approaches to discretize the state variables explicitly, multiple 
shooting (Bock and Plitt, 1984; Leineweber et al., 1997) and collocation on finite 
elements (Cuthrell and Biegler, 1987; Betts, 2001; Biegler et al., 2002). 
 
Multiple Shooting 
  
With multiple shooting, time is discretized into P stages and control variables are 
parametrized using a finite set of control parameters in each stage, as with partial 
discretization. The DAE system is solved on each stage, i = 1,…P and the values of the 
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state variables z(ti) are chosen as additional unknowns. In this way a set of relaxed, 
decoupled initial value problems (IVP) is obtained, as follows: 
 

F(dz/dt; z(t); y(t); υi; p)  = 0, t ∈ [ti-1, ti],  z(ti-1) = zi 
zi+1 - z(ti; zi; υi; p)   = 0, i = 1, ...P-1 

 
Note that continuity among stage is treated through equality constraints, so that the final 
solution satisfies the DAE system. With this approach, inequality constraints for states 
and controls can be imposed directly at the grid points, but path constraints for the states 
may not be satisfied between grid points. This problem can be avoided by applying 
penalty techniques to enforce feasibility, like the ones used in the sequential methods.  
 
The resulting NLP is solved using SQP-type methods, as described above.  At each SQP 
iteration, the DAEs are integrated in each stage and objective and constraint gradients 
with respect to p, zi and υi are obtained using sensitivity equations, as in (SE). Compared 
to sequential methods, the NLP contains many more variables but efficient 
decompositions have been proposed (Leineweber et al., 1997) and many of these 
calculations can be performed in parallel.  
 
Collocation Methods 
 
In this formulation, the continuous time problem is converted into an NLP by 
approximating the profiles as a family of polynomials on finite elements. Various 
polynomial representations are used in the literature, including Lagrange interpolation 
polynomials for the differential and algebraic profiles (see Cuthrell and Biegler, 1987). In 
Betts (2001) a Hermite-Simpson collocation form is used while Cervantes and Biegler 
(1998) and Tanartkit and Biegler (1995) use a monomial basis representation (Bader and 
Ascher, 1987) for the differential profiles. All of these representations stem from implicit 
Runge-Kutta formulae and is the monomial representation is recommended because of 
smaller condition number and smaller rounding errors. On the other hand, the control and 
algebraic profiles are approximated using Lagrange polynomials. 
 
Discretizations of (DAOP) using collocation formulations lead to the largest NLP 
problems but these can be solved efficiently using large-scale NLP solvers, such as 
IPOPT and by exploiting the structure of the collocation equations. Biegler et al. (2002) 
provide a review of dynamic optimization methods using simultaneous methods. These 
methods offer a number of advantages for challenging dynamic optimization problems, 
including: 
 

• Control variables can be discretized at the same level of accuracy as the 
differential and algebraic state variables. Finite elements allow for discontinuities 
in control profiles.  

 
• Collocation formulations allow problems with unstable modes can be handled is 

an efficient and well-conditioned manner. The NLP formulation inherits stability 
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properties of boundary value solvers. Moreover, an element-wise decomposition 
has been developed that pins down unstable modes in (DAOP).  

 
• Collocation formulations have been proposed with moving finite elements. This 

allows the placement of elements both for accurate breakpoint locations of control 
profiles as well as accurate DAE solutions.  

 
Dynamic optimization using collocation methods has been used for a number of process 
applications including batch process optimization (Bhatia and Biegler, 1997), nonlinear 
model predictive control (Albuquerque et al., 1997), grade transitions and process 
changeovers (Cervantes et al., 2002) and reactor design and synthesis (Lakshmanan, 
Rooney and Biegler, 2000; Ierapetritou, 2001).  
 
Extensions for Dynamic Optimization 
 
Here we briefly summarize a few issues that emerge for dynamic optimization. These 
extend the methods presented so far to larger and more challenging applications and 
include discrete decisions, the treatment of multistage dynamic systems and fundamental 
questions on the accuracy of discretized optimal control problems.  
 
Discrete decisions in dynamic optimization  
 
Along with the DAE models described in (2)-(3), it becomes important to consider the 
modeling of discrete events in many dynamic simulation and optimization problems. In 
chemical processes, examples of this phenomena include phase changes in vapor-liquid 
equilibrium systems, changes in modes in the operation of safety and relief valves, 
vessels running dry or overflowing, discrete decisions made by control systems and 
explosions due to accidents. These actions can be reversible or irreversible with the state 
profiles and should be modeled with appropriate logical contraints. An interesting 
presentation on modeling discrete events can be found in Allgor and Barton, 1999. The 
simulation of these events is often triggered by an appropriate discontinuity function 
which monitors a change in the condition and leads to a change in the state equations. 
These changes can be reformulated either by using complementarity conditions (with 
positive continuous variables x and y alternately set to zero) or as binary decision 
variables (Barton and Park, 1995). These additional variables can then be embedded 
within optimization problems. Here complementarity conditions can be reformulated 
through barrier methods (Raghunathan and Biegler, 2002) to yield an NLP while the 
incorporation of integer variables leads to mixed integer optimization problems.  
 
For the latter case, several studies have considered the solution of Mixed Integer 
Dynamic Optimization (MIDO) problems. In particular, Avraam et al. (1998) developed 
a complete discretization of the state and control variables to form a mixed integer 
nonlinear program. On the other hand, Allgor and Barton (1999) apply a sequential 
strategy and discretize only the control profile. In this case, careful attention is paid to the 
calculation of sensitivity information across discrete decisions that are triggered in time.  
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Multistage applications  
 
The ability to solve large dynamic optimization problems and to model discrete decisions 
allows the integration of multiple dynamic systems for design and analysis. Here 
different dynamic stages of operation can be considered with individual models for each 
dynamic stage. Multistage applications in process engineering include startups and 
transients in dynamic systems with different modes of operation, design and operation of 
periodic processes with different models (e.g., adsorption, regeneration, pressurization, in 
a dynamic cycle (Nilchan and Pantelides, 1998), synthesis of chemical reactor networks 
(Lakshmanan and Biegler, 1995), changes in physical phenomena due to discrete changes 
(as seen above) and multiproduct and multiperiod batch plants where scheduling and 
dynamics need to be combined and different sequences and dynamic operations need to 
be optimized. For these applications each stage is described by separate state variables 
and models as in equations (2)-(3). These stages include an overall objective funtion with 
parameters linking among stages and control profiles that are manipulated within each 
stage. Moreover, multistage models need to incorporate transitions between dynamic 
stages. These can include logical conditions and transitions to multiple models for 
different operation. Moreover, the DAE models for each stage require consistent 
initializations across profile discontinuities, triggered by discrete decisions.  
 
The solution of multistage optimization problems has been considered in a number of 
recent studies. Bhatia and Biegler (1997) consider the simultaneous design, operation and 
scheduling of a multiproduct batch plant by solving a large NLP. More recently, 
multistage problems have been considered as mixed integer problems using sequential 
strategies as well as simultaneous strategies. These applications only represent the initial 
stages of dynamic systems modeling, in order to deal with an integrated analysis and 
optimization of large scale process models. With the development of more efficient 
decomposition and solution stategies for dynamic optimization, much more challenging 
and diverse multistage applications will continue to be considered.  
 
Improved Formulations for Dynamic Optimization 
 
For optimal control problems where control variables are discretized at the same level as 
the state variables, there are a number of open questions related to convergence to the 
solution of the original variational problem.  A number of studies have shown (e.g., 
Reddien, 1979; Cuthrell and Biegler, 1989; Schwartz, 1996; Polak, 1997) that the Karush 
Kuhn Tucker (KKT) conditions of the simultaneous NLP can be made consistent with the 
optimality conditions of the variational problem.  Nevertheless, these consistency 
properties do not guarantee convergence to solution  of the infinite dimensional optimal 
control problem and several studies report stability problems due to poor discretizations, 
high index constraints and singular arcs.  In particular, interesting stability questions arise 
regarding appropriate discretizations of control and state profiles.  Empirical evidence of 
this instability and practical remedies have been given in (Logsdon and Biegler, 1989, 
Bausa and Tsatsaronis (2001) and special cases of these have been analyzed rigorously in 
Dontchev et al. (2000). In a recent thesis, Biehn (2001) showed that for continuous, 
convex optimal control problems, two simple simultaneous collocation formulations have 
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desirable consistency properties. Moreover, his analysis has shown that these 
formulations remain stable in the presence of high index constraints, even when 
sequential (initial value) solvers fail on these problems.  In related work, Schwartz 
(1996) developed consistency results for explicit Runge-Kutta discretizations that apply 
to more challenging optimal control problems with singular arcs and discontinuous 
profiles. 
 
V. Optimization under Uncertainty 
  
All the previous optimization problems that we have reviewed are deterministic in nature. 
However, as one might expect, there is often significant uncertainty in application of 
optimization in the real world. Failure to account for the uncertainty of key parameters 
(e.g., technical coefficients, product demands) has the drawback that the solution of 
deterministic models can lead to non-optimal or infeasible decisions.   This, however, 
does not mean that deterministic models are not useful. In fact as will be seen, they are 
used as a basis in virtually any stochastic optimization method, or methods for flexibility 
analysis. 
 
 Considerable theoretical work has been reported in the Operations Research literature on 
the formulation and solution of linear stochastic optimization problems (see reviews by 
(see e.g., Dantzig, 1987; Birge, 1992; Dempster, 1980; Wets, 1989).  We provide here 
only a very brief review. An excellent recent review can be found in Sahinidis (2003). 
 
Extending deterministic models with probabilistic representations leads to the stochastic 
programming model.   The most common linear model is the following two-stage (fixed 
recourse) stochastic LP: 

 min 
z = c1

Tx1 + p2kc2k
T x2k

k∈K
∑

  (SLP) 
 s.t. A1x1 = b1     
  B1x1 + A2 x2k = b2k  Kk ∈∀    

  0 ≤ x1 ≤ Ux1      
  0 ≤ x2k ≤ Ux2   ∀k ∈ K ,   
where matrices B1 and A2  are fixed (i.e., B1k = B1  and A2k = A2  ∀k ∈ K ).  The term K 
denotes the set of possible stage-2 events defined on the finite, discrete probability space.  
This problem is important because: (i) it is representative of the multi-stage model in 
terms of probabilistic expansion of variables and constraints, and (ii) it is the key 
structural component to the multi-stage problem and is the key sub-problem for the 
nested decomposition algorithms used to solve the multi-stage LP.   
 
The study of the theory and solution of the multi-stage stochastic LP (MSLP) has 
paralleled the development of deterministic LP methods.  Early references included 
seminal work on the formulation and problem structure (Dantzig, 1955, 1963; Madansky, 
1963; Rosen, 1963; Dempster, 1965; Wets, 1966), but left questions concerning the 
solution to the general problem largely unanswered.  Since the certainty equivalent LP, 
expanded to multi-stage as needed, is intractably large for all but the smallest problems 
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(see Dantzig, 1987 for discussion of exponential expansion), current solution methods 
use Benders-based decomposition strategies (Van Slyke and Wets, 1969; Benders, 1962; 
Geoffrion, 1972).  See Dantzig (1987) or Birge (1982a) for a discussion of the general 
multi-stage stochastic LP formulations.  Comprehensive reviews of theory and solution 
practices are provided in the collections edited by Dempster (1980) and Ermoliev and 
Wets (1988).   Spurred in part by the expansion in computing power, recent progress has 
been made in solving the two-stage stochastic linear programming problem using 
Benders-based schemes (see e.g., Dantzig and Glynn, 1989; Infanger, 1991; Wets, 1983, 
1989; Gassmann, 1990).  Extension to multi-stage problems via nested decomposition 
methods is conceptually straightforward.  The multi-stage problem however remains 
intractable due to computational expense, arising from the nested structure of the problem 
and resultant exponential growth in the number of sub-problems (see Dantzig, 1987; 
Gassmann, 1990; Louveaux, 1986; Birge, 1982a; Dempster, 1980).  While a few 
specialized problems have been addressed (see Dantzig, 1987; Beale et al, 1980; 
Bienstock and Shapiro, 1985; Karreman, 1963), general multi-stage linear problems 
remain computationally intractable.  Multi-stage solution methods generally rely on 
nested decomposition strategies which involve solving series of two-stage sub-problems 
(Gassmann, 1990; Birge, 1982a; Ermoliev and Wets, 1988).  Hence, advances in the 
solution to two-stage models are applicable toward improving multi-stage solution 
methods.  Conceptually the extension to nonlinear stochastic problems is similar as in the 
linear case. The extension to stochastic mixed-integer problems is considerably more 
difficult (see Sahinidis, 2003). 
 
Process Flexibility 
 
In contrast to the stochastic optimization approach, considerable effort has been devoted 
in process systems engineering over the last twenty five years to developing methods for 
evaluating and optimizing flexibility. The major goal has been to address nonlinear 
optimization problems under uncertainty, particularly design problems (see Grossmann 
and Straub, 1992).  The proposed approaches can be classified in two broad classes: (i) 
deterministic, in which the parameter uncertainty is typically described through bounds of 
expected deviations, and (ii) stochastic, that describes the uncertainty through a 
probability distribution function.  Here we only review the deterministic flexibility 
anlaysis. 
  
 The model of the process can be described, in the case where the topology is 
fixed, by a set of equations and inequalities involving continuous variables of the form: 
 

   
h(d, z,x,θ) = 0

g(d, z,x,θ) ≤ 0
      (F0) 

 
where the variables are defined as follows: 
d ∈Rnd   - denotes an nd vector of stage-1 variables (e.g. design variables) that defines 

the structure and equipment sizes of the process 
z ∈Rnz    - denotes an nz vector of stage-2 variables (e.g. control variables) that can be 

adjusted during plant operation (e.g. flows, pressures) 
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x ∈Rnx   - denotes an nx vector of state variables that describes the behavior of the 
process (e.g. flows, pressures, temperatures, reactor conversions) 

θ ∈Rnθ   - denotes an nθ vector of uncertain parameters (e.g. feed composition, kinetic 
constants). 

For simplicity in the presentation and consistency with the existing literature (Grossmann 
and Floudas, 1987), it is assumed that the state variables in (F0) are eliminated from the 
equations and thus the model reduces to, 
   f j(z,θ,d) ≤ 0 j ∈J  

Note, however, that in the development of the proposed methodology this projection will 
not be necessary. 
 For a given design d, the first important question is to determine whether this 
design is feasible for a realization of the uncertain parameters θ  also known as the 
feasibility problem (F1).  The formulation of this problem (Halemane and Grossmann, 
1983) is: 

   
ψ (θ, d) = min

z,u
u

s.t. f j(z,θ,d) ≤ u j ∈ J; u ∈R1
   (F1) 

Note that problem (F1) is an optimization problem where the objective is to find a point 
z*, for fixed d and θ, such that the maximum potential constraint violation is minimized.  
However, u is in principle a function of d and θ, and expressed in that form it represents 
the projected feasibility function.  The projected feasibility function ψ(θ, d) is a key 
concept in the flexibility analysis and its construction is an important and challenging 
task.  As can be deduced from (F1), ψ ����LQGLFDWHV�IHDVLELOLW\�DQG�ψ > 0, infeasibility. 
 
The problem of evaluating flexibility over a specified set T of uncertain parameters, also 
known as the flexibility test, corresponds to the finding the worst value of θ in the set T, 
which gives rise to the maximization problem, 
 

  ),(max)( θψχ
θ

dd
T∈

=        (F2) 

 
which is also equivalent to the max-min-max optimization problem (Halemane and 
Grossmann, 1983), 
 

),,(maxminmax)( θχ
θ

zdfd j
JjzT ∈∈

=      (F2’)  

 

where a common description of T is }{ ULT θθθθ ≤≤= , where θL, θU, are lower and 

upper bounds respectively. Other descriptions of T such as hypercircles or hyper-
ellipsoids can also be easily used. 
 
The more general problem of quantifying flexibility, also known as the flexibility index 
problem (F3), is to determine the maximum deviation δ that a given design d  can 
tolerate, such that every point θ in the uncertain parameter space, T(δ),  is feasible. The 
most common choice is the hyper-rectangle parametric in δ, 
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T (δ ) = θ θ N −δ∆θ − ≤ θ ≤θ N + δ∆θ +{ }, where ∆θ+ and ∆θ- are the expected deviations 

of uncertain parameters in the positive and negative direction.  . Other descriptions of 
T(δ), such as the parametric hyper-ellipsoid, are also possible (see Rooney and Biegler, 
1999) 
  
As shown by Swaney and Grossmann (1985a), the flexibility index can be determined 
from the formulation, 

   

F = max δ
s.t. max

θ ∈T (δ )
ψ (θ,d) ≤ 0

δ ≥ 0 δ ∈R1

     (F3) 

As seen from the implicit form of the projected feasibility function ψ(θ,d), problem (F3) 
cannot be directly solved unless ψ is determined.  The simplest way around this problem 
(see Swaney and Grossmann, 1985b) is to determine the flexibility index in (F3) by 
vertex enumeration search in which the maximum displacement is computed along each 
vertex direction, thus avoiding the explicit construction of ψ.  This vertex enumeration 
scheme relies on the assumption that the critical points θ* lie at the vertices of T(δ*), 
which is valid for the case of a linear model and in general only if certain convexity 
conditions hold.  The drawback with this approach, however, is that it requires the 
solution of 2nθ optimization problems, and therefore, it scales exponentially with the 
number of uncertain parameters.   
 
An alternative method for evaluating the flexibility index that does not rely on the 
assumption that critical points correspond to vertices, is the active set strategy by 
Grossmann and Floudas (1987).  In this method the key idea is that the feasible region 
projected into the space of d and θ, can be expressed in terms of active sets of constraints 
fj(z, θ, d) = u, j∈JAk, k=1, nAS, where nAS is the number of possible active sets of fj.  
These active sets are defined by all subsets of non-zero multipliers that satisfy the Kuhn-
Tucker conditions of (F1): 

   

λ j
k

j ∈JA
k

∑ =1

λ j
k ∂ f j

∂zj ∈JA
k

∑ = 0
        

By reformulating problem (F3) for evaluating the flexibility index, and using the above 
equations with 0-1 variables for the complementarity conditions and slacks, we get a 
mixed-integer optimization problem is obtained that can explicitly solve (F3) without 
having to find a-priori all the active sets.   
 

  

F = min
δ

λj,sj,y j  
 
 s.t.  fj(d,z,θ) + sj = 0  j ∈ J      (ASF) 
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1=∑
∈Jj

jλ  

0=
∂
∂

∑
∈ z

f j

Jj
jλ  

  sj -U (1-yj) ≤ 0} j ∈ J 

  λj  - yj ≤  0 

1+=∑
∈

z
Jj

j ny  

 
  θN - δ∆θ- ≤ θ ≤ θN + δ∆θ+ 

  δ ε 0; sj, λj  ε 0, j ∈ J;  yj = 0, 1   j∈ J 
 
 
This model (ASF) gives rise to an MINLP problem (or MILP if all constraints are linear) 
with nf = card{J} binary variables.  
 
As for nonlinear optimization problems under uncertainty they involve the selection of 
the stage-1 variables d (i.e. design variables) so as to minimize cost and either a) satisfy 
the flexibility test (F2), or b) maximize the flexibility index as given by (F3), where the 
latter problem gives rise to a multiobjective optimization problem.   
 
Most of the previous work in design under uncertainty (Johns et al, 1976; Malik and 
Hughes, 1979) has considered the effect of the continuous uncertain parameters θ for the 
design optimization through the minimization of the expected value of the cost using a 
two-stage strategy, similar as the one in problem (SLP), but for continuous distribution 
functions, is given by, 

  [ ]0),,(),,(minmin
)(

≤
∈

θθ
θ

zdfzdCE
zFTd

 (SNLP) 

 
The reason the above also requires a two-stage strategy is because the design variables d 
are chosen in stage 1 and remain fixed during stage 2 during which the control variables z 
are adjusted depending on the realizations of the parameters θ.  In order to handle 
infeasibilities in the inner minimization, one approach is to assign penalties for the 
violation of constraints (e.g. C(d,z,θ)=C if f(d,z,θ) >0.  The other approach is to enforce 
feasibility for a specified flexibility index F (e.g. see Halemane and Grossmann, 1993) 
through the parameter set T(F)={θ|θL -F∆θ- � θ �θU+F∆θ+}. In this case (SNLP) is 
formulated as 
 

   [ ]
0),(max..

0),,(),,(minmin

)(

)(

≤

≤

∈

∈

θψ

θθ

θ

θ

dts

zdfzdCE

FT

zFTd
 

(SNLPF)
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A particular case of (SNLP) occurs when only a discrete set of points θk, k=1..K are 
specified which then gives rise to the optimal design problem, 
 

  

Kkzdfts

zdCw

kk

K

k

kk
k

zzd K

,...10),,(..

),,(min
1,..., 1

=≤

∑
=

θ

θ
  

(DSNLP)

 

 

where wk are weights that are assigned to each point kθ , and 1
1

=∑
=

K

k
kw .  

 Problem (DSNLP) can be interpreted as problem under uncertainty with discrete 
probabilities, which is also equivalent to a multiperiod problem, which is also of great 
importance in the optimal design of flexible chemical plants (see Grossmann and Sargent, 
1979; Varvarezos et al. 1992, 1993).  As shown by Grossmann and Sargent (1978) 
problem (DSNLP) can also be used to approximate the solution of (SNLPF).  This is 
accomplished by selecting an initial set of points θk, solving problem (DSNLP) and 
verifying its feasibility over T(F) by solving problem (F2) or (F3). If the design is 
feasible the procedure terminates.  Otherwise the critical point obtained from the 
flexibility evaluation is included to the set of K θ  points and the solution of (DSNLP) is 
repeated.  Computational experience has shown that commonly one or two major 
iterations must be performed to achieve feasibility with this method.  Ostrovsky et al 
(1997) has proposed an alternative method for the two-stage problem that simplifies the 
evaluation of flexibility. 
 
Stochastic approaches for the evaluation of flexibility rely on the idea of using joint 
probability distribution functions, which are integrated over the feasible reagion in order 
to determine the probability that constraints be satisfied given that control variables can 
be manipulated (e.g. Straub and Grossmann, 1993;  Pistikopoulos and Mazzuchi,1991). 
For a recent review of stochastic flexibility see Pisdtikoploulos (2002). 

 
VI. Summary and Conclusions 

 
Research in the formulation, solution and analysis of mathematical programs has grown 
tremendously over the past 25 years. In 1980, optimization on engineering problems 
beyond linear programming was often viewed as a curious novelty without much benefit. 
Now optimization applications are essential in all areas of process systems engineering 
including design, identification, control, estimation, scheduling and planning. This paper 
offers a retrospective on relevant optimization methods that have been developed and 
applied over the past 25 years and reviews four broad areas. First, we deal with methods 
for continuous variable optimization and survey advances in nonlinear programming 
methods with and without derivative evaluations. Next we consider mixed integer 
programming methods and cover a family of algorithms and extensions for MINLPs. 
Related to these two approaches is optimization with differential algebraic models. Over 
the past decade these challenging problems have been considered more frequently in the 
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process industries through sequential and simultaneous methods. Finally, we survey 
methods to deal with the essential problem of optimization under uncertainty.  
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